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Abstract. Einstein’s field equations are applied to infinite cylinders of fluid, and some exact 
solutions are obtained by a systematic method. Solutions having pa+ are shown to be 
unstable as the equation of state p = p  is approached. 

1. Introduction 

From the earliest days of general relativity, there has been continuing interest in 
cylindrically symmetric solutions, which off er the simplest means of exploring depar- 
tures from spherical symmetry. The static vacuum solution dates back to the work of 
Levi-Civita and Weyl in 1917-18, and its extension to rotating sources has intermit- 
tently occupied other researchers almost to the present day (see Lewis 1932, Frehland 
1972, and references therein). 

However, the discovery of explicit source solutions has generally lagged behind the 
vacuum fields, even in the supposedly simple case of a static distribution of fluid. The 
solutions of Marder (1958), for example, have a specialized metric and anisotropic 
pressure. There has in fact been as much success with rotating dust solutions (King 
1974, Zimmerman 1975) as with any other type, despite the complications of angular 
momentum. 

The purpose of this paper is to present methods of generating static cylindrical 
perfect-fluid solutions, and to give some simple examples. 

2. Metric and field equations 

We choose the static cylindrical metric to be 

where A, p ,  v are functions of the radial coordinate, r. In vacuum solutions for this 
metric, two functions will suffice (cf Synge 1960, chap. 8,O 1). The solutions of Marder 
(1958) have only two independent functions, and are therefore restricted from the 
outset. 

Using relativistic units (c = G = l ) ,  the energy tensor for a perfect fluid in this 
situation is 

Ti’ = diag(p, pe-’*, pe-’@, pe-’”) (2.2) 

1303 



1304 A B Evans 

where (xl, x 2 ,  x 3 ,  x 4 ) = ( r , 4 ,  z ,  t ) .  With d/dr denoted by a prime, the field equations 
G” = -8rT” give 

h ’ p ’ + p ’ ~ ’ +  V’A’  = 8Tp (2.3) 

p” + v” + p l 2  + p’v’  + v” = 87rp (2.4) 
A “ + v ” + A l2 + A ‘ v ‘ + vI2 = 8rp (2.5) 
A ” + p ” + A  l 2  + A  ’p ’ + p l 2  = - 8rp. (2.6) 

(p+p)v’+p’= 0. (2.7) 

(A - p ) ’ exp(A+p+v)= l  (2.8) 

The conservation equation = 0 yields the condition for static equilibrium 

Subtracting (2.4) from (2.5), we can integrate to obtain 

where the constant on the right is determined by imposing realistic conditions at the 
axis: as rJ.0, we want e*/r+l ,  and p,p ’ ,  v + O .  Also, the equation 
(2.4) + (2.5) - 2 x (2.3) is 

(2.9) (A + p  + 2 ~ ) ” + 2 v ’ ~ + ( A  -p)” -v ’ (A  +p) ’=O.  

If we define 

q = A - p  

[ = A + p + v  (2.10) 

ql=e-c (2.11) 

VN+3y”-5’v’ +[”+e-” = 0. (2.12) 

then (2.8) becomes 

and consequently (2.9) may be written as 

From this we get a second-order linear equation for u = e3”: 

U”- g‘u’ + 3(5” + e-2c)u = 0. (2.13) 

If no equation of state is specified, then 5 may be assigned arbitrarily, though we note 
that a physical solution must have eb/r + 1 as rJ0 .  

The entire solution is reducible to quadratures if a particular integral of (2.13), say 
u = U*, can be found. For then the substitution u = u*u gives 

u1’+(21nu*-5 ) ’u ’=0  (2.14) 
and hence the general integral of (2.13) is 

u =au*+bu* (eE/u*‘)dr (2.15) 
where a and b are the constants of integration. We can set u(0) = 1, so that the metric is 
Minkowskian at the axis: then only one of the two constants is arbitrary. (We get 
u’(0) = 0 automatically if a suitable 5 is chosen.) Finally, (2.1 1) provides a quadrature 
for q, with the integration constant being determined by the requirement that e’/r + 1 
as rJ.0. The whole process of integration thus gives rise to only one arbitrary constant of 
physical significance, though others may be incorporated into 5. 
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Having obtained the metric functions, one has to work out p and p to check that a 

3 2 ~ p  = (6’+3v’)(5’- v’)-e”‘ (2.16) 

physically plausible solution is possible. In terms of 5 and v, we find from (2.3) 

and then p is most easily found from 

47r(5p - p )  = (e‘)”/e‘ (2.17) 

which is equivalent to 3 X (2.3) + (2.4) + (2.5) + (2.6). If we insist that p > 0, p 5 0, then 
from (2.7) the condition p ’  S 0 corresponds to v ’  2 0, or equivalently to U 2 0. (There is 
equality only at r = 0.) A realistic equation of state will also give p’ < 0 when p’ < 0, and 
in two of the examples below this property is readily verified using (2.17). 

3. Some examples 

3.1. Model (i) 
An especially simple solution that is also physically interesting is obtained by setting 
e‘ = r. In this case, (2.13) immediately gives U = 1 + P Z r Z ,  where p is a constant. The 
complete solution is 

e2*/r2 = e2p = (1  +x2) -1 ’3  

e * v  = (1 +x2)2/3 (3.1) 
407rp = 87rp = (5p ’/3)( 1 + x ’)-’ 

where x = pr.  We thus have the highly relativistic equation of state p = p / 5 .  

3.2. Model (ii) 
The simplicity of model (i) is due to the fact that e‘ = r gives = 0 in (2.13). 
There are two other cases having this property: er=(l /P)s in(pr) ,  and e r =  
(1/p) sinhwr), where p is a non-zero constant. 

The first of these is physically acceptable. We find 

U = e3” = 1 +a sin2&r) 

where a is the constant of integration. This leads to 
(3.2) 

967rp = p z ( 7 - - 4 )  C Y + l  
(3.3) 

and hence p ( 0 )  > 0 requires a > 3. At the boundary (p = 0), we have 

sin2(ipr) = [m- 21/2a. (3.4) 
For any fixed p, the radius of the boundary is greatest when CY = 6+4J3,  giving 
pr = n/6. Equation (3.3) shows that p f  < O  when O<pr s ~ / 6 .  Finally, (2.17) implies 
t ha tp>OwhenpaO,  and tha tpf=5p’ .  

The second case is obtained from the first on replacing p byip,  and (2.17) shows at 
once that it is unphysical: p < 0 when p = 0. Similar properties are found in (i) above, 
and in (iii), (iv) below: these models are acceptable as they stand, but become unphysical 
if we replace /3 by ip. 
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3.3. Model (iii) 
Setting e‘ = (1/p) tanhwr) leads to 

u = c o s L + a s i n L  

where 

L = In cosh&). 

Putting p r  = x, we obtain 

(3.5) 

321rp =p’[sech’ x($ tan 8-sinh’x tan’ 8 -  1 - 1 ) I  
where (3.6) 

e =tan-’ a -L. 

We require LY > J 3 ,  to give p ( 0 )  > 0. Since p < 0 when tan 8 = 0, the distribution has 
L < tan-’a < r / 2 ,  giving x <cosh-’ exp(tr/2J3)= 1.56, for all values of a. 
(Computer-generated models indicate that x c 0.38 at the boundary, the maximum 
occurring when a = 7.2.) 

From (2.17) we find that p > 0 whenp 2 0, and (2.7) then implies that p ’  < 0 between 
the axis and the boundary. Differentiating (2.17), we have p’<O when p’<O. 

3.4. Model (iv) 
If we choose e‘ = r(1 -p’r’), then 

U =a(1 -p2rz )q+(1  -a)(l-pZr2)2-q 

where (3.7) 

J13 9 = 1 +-E 2.8. 
2 

The expression for p is rather unwieldy, and we note only that p(O)>O requires 
LY <(a- 11)/2JT?;= -1. From (2.17) we get p > 5 p ,  and then (2.7) shows that p ’ <  0 
between the axis and the boundary. In this example we cannot conclude from (2.17) 
that p ’ <  0 when p ’ <  0, but computer-generated solutions indicate that the property 
always holds. They also show that the greatest value of p r  at the boundary is 
approximately 0.21, attained when a = -5.2. 

4. Fitting exterior solutions 

We shall deal mainly with interior solutions filling all space, but in models (ii)-(iv) of § 3 
the interior solution terminates at a finite radius, when the pressure becomes zero with 
the density still non-negative. It is therefore desirable to know how an exterior vacuum 
solution may be fitted smoothly to a given interior solution. 

It is natural to choose (2.1) as the form of the exterior metric, and solve the field 
equations of § 2 with p = p = 0. We note first that (2.17) gives 

exp(h + p  + v )  = k ( r  - a )  (4.1) 
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where a and k are constants. In the same way as (2.8) was derived earlier, we can now 
obtain with the aid of (4.1) 

p’  = A ’ +  b / ( r  - a )  

V I  = A ’ + c / ( r  - a )  
(4.2) 

where b and c are constants. Integrating (4.2), and substituting the results back into 
(4.1), we get 

e~ = A  ( r  - a ) ( 1 - b - c ) / 3  

eW = B ( r - a )  
e~ = C(r - a ) ( i - b + 2 ~ ) / 3  

(4.3) (1+2b-c) /3  

where A, B, C are further constants of integration. Substitution of (4.3) into (2.3) gives 
the condition 

b 2 - k  + c 2 =  1 (4.4) 

and then the other field equations are automatically satisfied. 

use (4.3) to write 
In order to fit an exterior solution to a given interior solution, at a boundary r = s, we 

A ’  = f (1  -b  - c ) / ( r  - a )  

p’  =;(I + 2b - c ) / ( r  - a )  

V I  = $1 -b  + 2c)/(r - a ) .  
(4.5) 

In these equations we can put r =s, set A ‘ ,  p ‘ ,  V I  to their required (interior) boundary 
values, and solve for a, b, c. The condition for the existence of a solution turns out to be 
C‘#O,  which is guaranteed at the boundary by (2.16). The solution automatically 
satisfies (4.4), because the prescribed values of A ’ ,  p’ and V I  must give p = 0 in (2.3). 

It is obvious from (4.3) that we can always choose A, B, C so that A ,  p, v are 
continuous at the boundary. Also, if the interior solution has p ( s )  = 0 (in addition to 
p ( s )  = O), then (2.4H2.6) imply that A ” ,  p”,  v” are continuous at the boundary as well. 

5. Models with p OC p 

The result (2.17), and the simple solution (3.1), suggest that further integration of the 
equations might be possible if one took the equation of state p = n p ,  where n is a 
constant. (This is more convenient than the usual form p = ( y  - 1)p.) Substituting for p 
in (2.17), and then eliminatingp by using (2.16), we obtain 

provided n # 5. (We covered n = 5 in 0 3.1.) Subtracting (2.12) from (5.1) gives 

k ( l ” + l ” )  = v”+~’v’  

where k = ( 3  + n ) / ( 5  - n ) ,  and this has the integral 

(5.1) 

(5.2) 

v ’  = k (l’- e-g). (5.3) 
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With y =eb, elimination of v' from (2,12) by means of (5.3) now yields 

y y " + a y , 2 - 2 ( a + 1 ) y ' + ( a + 2 ) = o  (5.4) 
where CY = i ( n  +7)(n - 1)/(5 - n ) .  This equation may be recast into the form 

If a # 0, we get the integral 

(5.6) 

where 

a = 1 + 2/a = [(n + 1)* + 121/[(n + 7)(n  - 111. (5.7) 

If a = 0 ( n  = 1 or - 7), the corresponding integral is 

-- Y cy' 
- B  

a result which follows directly from ( 5 3 ,  or from (5.6) on letting a +CO. 

To identify the integration constants A and B in terms of the equation of state and 
the central pressure or density, consider the behaviour of y near the axis. For small r, we 
want 

y = r ( I  +pr'),  p =constant. (5.9) 
Using (5.3), we then have from (2.16) 

27rp(O) = 3 P / ( 5 - n ) .  (5.10) 
Substituting (5.9) into (5.6), and eliminating p by means of (5.10), we find 

11 - l/al" 
27rp(O)(n - 5)' 

A =  (5.11) 

The corresponding result for (5.8) may be obtained by letting a + 00. For the case n = 1, 

-1 
8.rr ep(0)' 

B =  (5.12) 

In the remainder of this section, we shall only consider n > 1. 
Further integration of (5.6) or (5.8) must be carried out numerically, but asymptotic 

solutions as r + 00 can be deduced directly from these equations. In the case of (5.6), the 
assumption that y ' diverges, so that y '(y')'-' =constant, leads to its own contradiction. 
Therefore y'+constant, and clearly the only possibility is y '+a # 1. (Since a # -2, 
V n ,  (5.4) forbids y + JA.) Suppose then that 

y l = a  +brm,  m<O (5.13) 
giving y =ar, to sufficient accuracy. Substituting into (5 .6) ,  we find two conditions: 

(bj" =Alal"-2(1 - U )  (5.14) 
and 

am+2=O (5.15) 
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the second of which gives 

- 2(n + 7)(n - 1) 
(n  + 1)’+ 12 . m =  (5.16) 

Thus for n > 1 we have m < 0, as is required in (5.13). The sign of b, though not given by 
(5.14), is determined by the fact that y ’e[ l ,  a )  or (a, 11, according as a > 1 or a < 1. 
(This can be seen from (5.6).) Thus from (5.13), b has the same sign as 1 -a. 

The definitions (2.10), with (2.11) and (5.3), give 

(n  - 1 ) ~ ‘ - 4  A ’ =  
(n  - 5 ) y  

(5.17) 

Hence we have asymptotic power-of-r behaviour in eA, e& and e“, with the power law 
indices determined by 

1 (n  - l)(n + 3) 
r ( n + 1 ) ~ + 1 2  

A ’ = - -  

1 -4(n-1)  
r (n  + I ) ~ +  12 (5.18) 

1 4(n+3) 
r (n  + I)’+ 12 

v’ z- 

for n > 1. (See (5.7), (5.13).) Although we had to exclude n = 5 in order to obtain these 
results, the solution (3.1) fits this pattern. For other values of n, computer-generated 
solutions readily verify (5.18). 

We note finally that (2.7) implies an asymptotic power law diminution of pressure 
and density. On integration it gives 

(5.19) p = np = p ( 0 )  exp[ - (n  + l)v]. 

6. Thecasep=p 

Although one can pursue this special case further by means of (5.8) and (5.12), it is more 
convenient to use the original field equations. We note first that with n = 1 the second 
of equations (5.17) gives p’ = 0, so that we can set p = 0 and obtain three independent 
equations from (2.3)-(2.6): 

A’v’= 8 r p  (6.1) 

8 r P  (6.2) VI’+ v’2 = 

A ~ ~ + A ’ *  = -g rp .  (6.3) 
The conservation equation (2.7) is immediately integrable: 

p = p ( 0 )  e+ (6.4) 
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and substitution into (6.2) leads to a further integral: 
= (2k)1/2u1/2 e-” 

where k = 8.rrp(O). 
Substituting (6.4) and (6.5) into (6.1), we get 

A I  = ($k)1/2u-1/2 

and hence (using (6.5) again) 

A ” =  -k  e-2”(l+$v-’). (6.7) 

Equation (6.3) is now automatically satisfied, while from (6.5) and (6.6) we have 

e2” = CU, C = constant. (6.8) 

A‘=’ 2v ‘ /U, giving the integral 

To identify C, we use (6.8) and (6.5): 

(e* 1’ = ( i ~ k ) ’ ’ ~  e-”. (6.9) 

At r = 0, we want (e”)’ =ey  = 1, and so C = 2/k. 
We have now reduced the problem to that of integrating (6.5), which can be done 

numerically. This is an improvement on the method of § 5 ,  which required the 
integration of (2.11) as well as (5.8). 

For comparison with (5.18), we note that the asymptotic solution for large r has 
(from (6.5) and (6.8)) 

e2” = 2kr2 In r 
0 

(6.10) 

Because of the logarithmic terms, this does not fit the pattern found for the neighbour- 
ing asymptotic solutions with n > 1. 

7. Discussion 

The methods and results outlined above go some way towards filling a gap in the 
literature on cylindrical metrics. One notable feature of the solutions is that they are 
unstable with respect to the equation of state: modeIs having p = np, n > 1, do not join 
smoothly on to the ‘stiff matter’ case p = p .  It is interesting that equation-of-state 
instability has also been found by Collins (1974) in the behaviour of homogeneous 
world models. Symmetry plays a central role in homogeneous universes, just as it does 
in the present static models, and it seems likely that the instability phenomenon is 
restricted to situations such as these. 
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